AUTOMATA 2010

Guillaume Theyssier

LAMA lab. (CNRS, Université de Savoie, France)

June 14th, 2010

Chronology

- Banks (1970)
- Albert and Čulik (1987)
- Martin I (1993)
- Durand and Róka (1996)
- Durand-Lose (1997)
- Mazoyer and Rapaport (1998)
- Ollinger (2002)
- T (2005)

- ► Classical approach:
 - 1 define a priori a list of properties or classes
 - 2 being similar ⇔ satisfying the same properties

- ► Classical approach:
 - 1 define a priori a list of properties or classes
 - 2 being similar ⇔ satisfying the same properties
- ► This talk:
 - define a relation of similarity or equivalence between CA
 - 2 equivalence classes are obtained a posteriori

► Classical approach:

- 1 define a priori a list of properties or classes
- 2 being similar ⇔ satisfying the same properties

► This talk:

- 1 define a relation of similarity or equivalence between CA
- 2 equivalence classes are obtained a posteriori

Key points:

- no external tools used to define properties
- infinitely many classes

What is universality?

► Classical approach:

What is universality?

► Classical approach:

- encoding/decoding/halt problem
- only a positive definition

What is universality?

► Classical approach:

- encoding/decoding/halt problem
- only a positive definition
- ► This talk:
 - 1 define a notion of **simulation** between CA
 - 2 intrinsic universality ^{def} ability to simulate *all* CA

▶ 1 solution for 2 problems

- ▶ 1 solution for 2 problems
 - define a **pre-order** on CA: <u>≺</u>

 (reflexive and transitive relation)

- ▶ 1 solution for 2 problems
 - define a **pre-order** on CA: <u>≺</u>

 (reflexive and transitive relation)
 - 2 classification:
 - induced equivalence relation

$$F \sim G \stackrel{\text{def}}{\Leftrightarrow} F \leq G \text{ and } G \leq F$$

topology of the pre-order

- ▶ 1 solution for 2 problems
 - define a **pre-order** on CA: <u>≺</u>

 (reflexive and transitive relation)
 - 2 classification:
 - induced equivalence relation

$$F \sim G \stackrel{def}{\Leftrightarrow} F \leq G \text{ and } G \leq F$$

- topology of the pre-order
- 3 universality:

F universal
$$\stackrel{def}{\Leftrightarrow} \forall G, G \leq F$$

Simulation pre-orders

► Ingredients:

- 1 "local" comparison relations
 - subautomaton
 - factor
- rescaling operations

General idea

pre-order ≡ local comparison up to rescaling

F ⊆ G

injection $\iota: Q_F \to Q_G$ with $\iota \circ F = G \circ \iota$

F ⊆ G

example:

Factor

Factor

■ *F* ⊴ *G*

 \leq

3

Factor

F ⊴ G

F ⊴ G

example

▶ 3 parameters: $F \mapsto F^{\langle m,t,z \rangle}$

Global map

$$F^{\langle 1,1,0 \rangle} = F$$

- ▶ 3 parameters: $F \mapsto F^{\langle m,t,z \rangle}$
- time

Global map

$$F^{\langle 1,t,0\rangle}=F^t$$

▶ 3 parameters: $F \mapsto F^{\langle m,t,z\rangle}$

- time
- shift

Global map

$$F^{\langle 1,t,z\rangle} = \sigma_z \circ F^t$$

▶ 3 parameters: $F \mapsto F^{\langle m,t,z\rangle}$

- time
- shift
- cell grouping

Global map

$$F^{\langle m,t,z\rangle} = \mathbf{0}_m^{-1} \circ \sigma_z \circ F^t \circ \mathbf{0}_m$$

 $\mathbf{o}_m^{-1}: Q^{\mathbb{Z}} \to (Q^m)^{\mathbb{Z}}$ canonical bijection

▶ 3 parameters: $F \mapsto F^{\langle m,t,z\rangle}$

- time
- shift
- cell grouping

Fact

 $F^{\langle m,t,z\rangle}$ is a cellular automaton

- with a possibly different alphabet
- with a possibly different radius

54

110

3 pre-orders

3 pre-orders

■ injective simulation

$$F \preceq_{i} G \stackrel{def}{\Leftrightarrow} \exists \overrightarrow{p_{1}}, \overrightarrow{p_{2}} : F^{\langle \overrightarrow{p_{1}} \rangle} \sqsubseteq G^{\langle \overrightarrow{p_{2}} \rangle}$$

■ injective simulation

$$F \preceq_{i} G \stackrel{def}{\Leftrightarrow} \exists \overrightarrow{p_{1}}, \overrightarrow{p_{2}} : F^{\langle \overrightarrow{p_{1}} \rangle} \sqsubseteq G^{\langle \overrightarrow{p_{2}} \rangle}$$

■ surjective simulation

$$F \leq_s G \stackrel{def}{\Leftrightarrow} \exists \overrightarrow{p_1}, \overrightarrow{p_2} : F^{\langle \overrightarrow{p_1} \rangle} \leq G^{\langle \overrightarrow{p_2} \rangle}$$

■ injective simulation

$$F \preceq_{i} G \stackrel{def}{\Leftrightarrow} \exists \overrightarrow{p_{1}}, \overrightarrow{p_{2}} : F^{\langle \overrightarrow{p_{1}} \rangle} \sqsubseteq G^{\langle \overrightarrow{p_{2}} \rangle}$$

■ surjective simulation

$$F \leq_{\mathbf{S}} G \stackrel{\text{def}}{\Leftrightarrow} \exists \overrightarrow{p_1}, \overrightarrow{p_2} : F^{\langle \overrightarrow{p_1} \rangle} \leq G^{\langle \overrightarrow{p_2} \rangle}$$

mixed simulation

$$F \leq_{\mathbf{m}} G \stackrel{def}{\Leftrightarrow} \exists \overrightarrow{p_1}, \overrightarrow{p_2} : F^{\langle \overrightarrow{p_1} \rangle} \trianglelefteq \sqsubseteq G^{\langle \overrightarrow{p_2} \rangle}$$

Examples

'Just Gliders' \leq 184 $^{\langle 2,2\rangle}$ \sim 184

'Just Gliders' \leq 184 $\langle 2,2 \rangle$ \sim 184

'Just Gliders'
$$\leq$$
 184 $^{\langle 2,2\rangle}$ \sim 184

'Just Gliders' ≤_s 184

'Just Gliders' \sqsubseteq 184 $^{\langle 2,2\rangle}$ \sim 184

'Just Gliders' \sqsubseteq 184 $^{\langle 2,2\rangle}$ \sim 184

'Just Gliders' ≤, 184

Separation

Separation

Separation

Pre-order *≤*_i

Pre-order \leq_i

Pre-order \leq_m

Pre-order \leq_s

Pre-order \leq_s

intrinsic universality $\stackrel{def}{=} U_i \stackrel{def}{=} \{F : \forall G, G \leq_i F\}$

N. Ollinger, "Universalities in Cellular Automata", Handbook of natural computing

intrinsic universality $\stackrel{def}{=} U_i \stackrel{def}{=} \{F : \forall G, G \leq_i F\}$

N. Ollinger, "Universalities in Cellular Automata", Handbook of natural computing

Theorem (Rapaport) — no real-time universality

If $F \in U_i$ then there is some G with $G^{\langle \overrightarrow{p} \rangle} \not\sqsubseteq F^{\langle t,t,z \rangle}$, $(\forall \overrightarrow{p},t,z)$.

intrinsic universality $\stackrel{\text{def}}{=} U_i \stackrel{\text{def}}{=} \{F : \forall G, G \leq_i F\}$

N. Ollinger, "Universalities in Cellular Automata", Handbook of natural computing

Theorem (Rapaport) — no real-time universality

If $F \in U_i$ then there is some G with $G^{\langle \overrightarrow{p} \rangle} \not\sqsubseteq F^{\langle t,t,z \rangle}$, $(\forall \overrightarrow{p},t,z)$.

Theorem (Ollinger) — strong universality

If $F \in U_i$ then for all G there is \overrightarrow{p} such that $G \sqsubseteq F^{\langle \overrightarrow{p} \rangle}$.

intrinsic universality $\stackrel{\text{def}}{=} U_i \stackrel{\text{def}}{=} \{F : \forall G, G \leq_i F\}$

N. Ollinger, "Universalities in Cellular Automata", Handbook of natural computing

Theorem (Rapaport) — no real-time universality

If $F \in U_i$ then there is some G with $G^{\langle \overrightarrow{p} \rangle} \not\sqsubseteq F^{\langle t,t,z \rangle}$, $(\forall \overrightarrow{p},t,z)$.

Theorem (Ollinger) — strong universality

If $F \in U_i$ then for all G there is \overrightarrow{p} such that $G \sqsubseteq F^{\langle \overrightarrow{p} \rangle}$.

Exercise

If $F \in U_i$ and has a spreading state then it can simulate any G without using the spreading state.

Theorem (Ollinger)

Intrinsic universality is undecidable.

Theorem (Ollinger)

Intrinsic universality is undecidable.

Proposition

 $F \times G$ universal iff F universal or G universal.

Theorem (Ollinger)

Intrinsic universality is undecidable.

Proposition

 $F \times G$ universal iff F universal or G universal.

Exercise

If F is not universal then there is a non-universal G with

$$F \leq_i G$$
 but $G \not \leq_i F$

The quest for small intrinsically universal CA

The quest for small intrinsically universal CA

- ▶ 2D
 - Banks 1970: 2 states + von Neuman neighb.
 - Conway 1970: Game of Life (2 states + Moore neighb.)

The quest for small intrinsically universal CA

▶ 2D

- Banks 1970: 2 states + von Neuman neighb.
- Conway 1970: Game of Life (2 states + Moore neighb.)

▶ 1D

- Banks 1970: 2 states + large radius
- Ollinger 2002: 6 states + radius 1
- Richard 2008: 4 states + radius 1 (U_i or U_m ?)

The quest for small intrinsically universal CA

- ▶ 2D
 - Banks 1970: 2 states + von Neuman neighb.
 - Conway 1970: Game of Life (2 states + Moore neighb.)
- ▶ 1D
 - Banks 1970: 2 states + large radius
 - Ollinger 2002: 6 states + radius 1
 - Richard 2008: 4 states + radius 1 (U_i or U_m ?)

Open problems

- $U_i \stackrel{?}{=} U_m$
- is 110 intrinsically unievrsal?

Adding syntactical constraints

Adding syntactical constraints

- **▶** Definitions:
 - **F** is **captive** if $\forall \overrightarrow{x}$:

$$f(x_1,\ldots,x_k)\in\{x_1,\ldots,x_k\}$$

F is **multiset** if $\forall \overrightarrow{x}$ and \forall permutation π

$$f(\overrightarrow{x}) = f(\pi(\overrightarrow{x}))$$

Adding syntactical constraints

- **▶** Definitions:
 - **F** is **captive** if $\forall \overrightarrow{x}$:

$$f(x_1,\ldots,x_k)\in\{x_1,\ldots,x_k\}$$

F is **multiset** if $\forall \overrightarrow{x}$ and \forall permutation π

$$f(\overrightarrow{X}) = f(\pi(\overrightarrow{X}))$$

Theorem

There exists intrinsically universal CA in the following families:

- number conserving
- totalistic (⊆ multiset)
- captive

Density

- \blacksquare \mathcal{P} a **property** (a set of CA)
- \blacksquare \mathcal{F} a **family** (a set of CA)
- \blacksquare $\mathcal{F}_{n,r}$: CA from \mathcal{F} with n states and radius r

- \blacksquare \mathcal{P} a **property** (a set of CA)
- \blacksquare \mathcal{F} a **family** (a set of CA)
- \blacksquare $\mathcal{F}_{n,r}$: CA from \mathcal{F} with n states and radius r

$$\begin{aligned} d_{\mathbf{n}}(\mathcal{P}/\mathcal{F}) &= \lim_{\mathbf{n} \to \infty} \frac{\#\mathcal{P} \cap \mathcal{F}_{\mathbf{n},r_0}}{\#\mathcal{F}_{\mathbf{n},r_0}} \\ d_{\mathbf{r}}(\mathcal{P}/\mathcal{F}) &= \lim_{\mathbf{r} \to \infty} \frac{\#\mathcal{P} \cap \mathcal{F}_{\mathbf{n}_0,\mathbf{r}}}{\#\mathcal{F}_{\mathbf{n}_0,\mathbf{r}}} \end{aligned}$$

- \blacksquare \mathcal{P} a **property** (a set of CA)
- \blacksquare \mathcal{F} a **family** (a set of CA)
- \blacksquare $\mathcal{F}_{n,r}$: CA from \mathcal{F} with n states and radius r

$$\begin{aligned} d_{\mathbf{n}}(\mathcal{P}/\mathcal{F}) &= \lim_{\mathbf{n} \to \infty} \frac{\#\mathcal{P} \cap \mathcal{F}_{\mathbf{n}, r_0}}{\#\mathcal{F}_{\mathbf{n}, r_0}} \\ d_{\mathbf{r}}(\mathcal{P}/\mathcal{F}) &= \lim_{\mathbf{r} \to \infty} \frac{\#\mathcal{P} \cap \mathcal{F}_{\mathbf{n}_0, \mathbf{r}}}{\#\mathcal{F}_{\mathbf{n}_0, \mathbf{r}}} \end{aligned}$$

Theorem (Boyer,T.)

- $d_n(U_i/\text{captive CA}) = 1$
- $d_r(U_i/\text{multiset CA}) = 1$
- combination of both + other families (e.g. outer-totalistic)

- \blacksquare \mathcal{P} a **property** (a set of CA)
- \blacksquare \mathcal{F} a **family** (a set of CA)
- \blacksquare $\mathcal{F}_{n,r}$: CA from \mathcal{F} with n states and radius r

$$d_{\mathbf{n}}(\mathcal{P}/\mathcal{F}) = \lim_{\mathbf{n} \to \infty} \frac{\#\mathcal{P} \cap \mathcal{F}_{\mathbf{n},r_0}}{\#\mathcal{F}_{\mathbf{n},r_0}}$$
$$d_{\mathbf{r}}(\mathcal{P}/\mathcal{F}) = \lim_{\mathbf{r} \to \infty} \frac{\#\mathcal{P} \cap \mathcal{F}_{\mathbf{n}_0,\mathbf{r}}}{\#\mathcal{F}_{\mathbf{n}_0,\mathbf{r}}}$$

Open problem

- \blacksquare $d_n(U_i/CA)$?
- $d_r(U_i/CA)$?

syntactical restriction ⇒ restriction on global behaviours?

syntactical restriction ⇒ restriction on global behaviours?

Proposition

- \blacksquare $\forall F$ there is G with radius 1 and $F \sim G$
- there are equivalence classes without any 2-state CA

syntactical restriction ⇒ restriction on global behaviours?

Proposition

- $\forall F$ there is G with radius 1 and $F \sim G$
- there are equivalence classes without any 2-state CA

▶ Encodings

- lacktriangledown $\phi: CA
 ightarrow \mathcal{F}$ encoding if $F \preceq_i \phi(F)$ for all F
- **fairness** wrt universality: $F \in U_i \Leftrightarrow \phi(F) \in U_i$

syntactical restriction ⇒ restriction on global behaviours?

Proposition

- \blacksquare $\forall F$ there is G with radius 1 and $F \sim G$
- there are equivalence classes without any 2-state CA

▶ Encodings

- lacktriangledown $\phi: CA
 ightarrow \mathcal{F}$ encoding if $F \preceq_i \phi(F)$ for all F
- **fairness** wrt universality: $F \in U_i \Leftrightarrow \phi(F) \in U_i$

Theorem

There are recursive fair encodings from CA into captive CA, and from CA into multiset CA.

syntactical restriction ⇒ restriction on global behaviours?

Proposition

- \blacksquare $\forall F$ there is G with radius 1 and $F \sim G$
- there are equivalence classes without any 2-state CA

▶ Encodings

- lacktriangledown $\phi: CA
 ightarrow \mathcal{F}$ encoding if $F \preceq_i \phi(F)$ for all F
- fairness wrt universality: $F \in U_i \Leftrightarrow \phi(F) \in U_i$

Open problem

What are equivalence classes without any captive and/or multiset CA?

- ► Reversible CA
 - there is no reversible $F \in U_i$

▶ Reversible CA

- there is no reversible $F \in U_i$
- but "reversible-universality" (RU_i) exists!

Theorem (Durand-Lose)

There exists a reversible *F* with $G \leq_i F$ for all reversible *G*.

- ► Reversible CA
 - there is no reversible $F \in U_i$
 - but "reversible-universality" (RU_i) exists!

Theorem (Durand-Lose)

There exists a reversible F with $G \leq_i F$ for all reversible G.

- **▶** Surjective CA
 - there is no surjective $F \in U_i$

- ► Reversible CA
 - there is no reversible $F \in U_i$
 - but "reversible-universality" (RU_i) exists!

Theorem (Durand-Lose)

There exists a reversible F with $G \leq_i F$ for all reversible G.

- **▶** Surjective CA
 - there is no surjective $F \in U_i$
 - $lue{}$ there is no "surjective-universality" when dimension ≥ 2

► Reversible CA

- there is no reversible $F \in U_i$
- but "reversible-universality" (RU_i) exists!

Theorem (Durand-Lose)

There exists a reversible F with $G \leq_i F$ for all reversible G.

▶ Surjective CA

- there is no surjective $F \in U_i$
- $lue{}$ there is no "surjective-universality" when dimension ≥ 2

Open problem

Is there a "surjective-universal" CA in dimension 1?

- ▶ Pre-order \leq_s
 - **q** persistent state $\stackrel{def}{\Leftrightarrow} f(*,q,*) = q$
 - $X \stackrel{def}{=} CA$ with a persistent state

- ▶ Pre-order \leq_s
 - **q** persistent state $\stackrel{def}{\Leftrightarrow} f(*, q, *) = q$
 - $X \stackrel{def}{=} CA$ with a persistent state

Theorem (Boyer,T.)

There exists $F \in X$ such that $G \leq_s F$ for all $G \in X$.

- ▶ Pre-order \leq_s
 - **q** persistent state $\stackrel{def}{\Leftrightarrow} f(*, q, *) = q$
 - $X \stackrel{def}{=} CA$ with a persistent state

Theorem (Boyer,T.)

There exists $F \in X$ such that $G \leq_s F$ for all $G \in X$.

Open problem

Is there a universal CA for \leq_s ?

Future directions

- 1 more general simulations?
 - sub-systems induced by stable sub-shifts (SFT? sofic?)
 - factor with context (sliding block codes)
- 2 dimension change
 - constructions à la Toffoli?
 - sub-actions à la Hochman?

3 asynchronous CA

Don't Know What to Do During the World Cup?

Don't Know What to Do During the World Cup?

▶ My list of small open questions

- **1** *F* non-surjective $\stackrel{?}{\Rightarrow}$ NIL $\leq_i F$
- **2** F reversible $\stackrel{?}{\Rightarrow}$ Id \leq F
- 3 find a reversible F with $F \nsim F^{-1}$
- 4 more than 3 classes of equicontinuous (up to σ) CA?
- **5** F expansive and $G \subseteq F \stackrel{?}{\Rightarrow} G$ expansive

Don't Know What to Do During the World Cup?

▶ My list of small open questions

- **1** *F* non-surjective $\stackrel{?}{\Rightarrow}$ NIL $\leq_i F$
- **2** *F* reversible $\stackrel{?}{\Rightarrow}$ Id \leq *F*
- 3 find a reversible F with $F \not\sim F^{-1}$
- 4 more than 3 classes of equicontinuous (up to σ) CA?
- **5** F expansive and $G \subseteq F \stackrel{?}{\Rightarrow} G$ expansive

Thank you!