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What is a classification?

I Classical approach:
1 define a priori a list of properties or classes
2 being similar⇔ satisfying the same properties

I This talk:
1 define a relation of similarity or equivalence between CA
2 equivalence classes are obtained a posteriori

Key points:
no external tools used to define properties
infinitely many classes
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Putting Order into Classifications and Universality

I 1 solution for 2 problems

1 define a pre-order on CA: �
(reflexive and transitive relation)

2 classification:
induced equivalence relation

F ∼ G def⇔ F � G and G � F

topology of the pre-order

3 universality:

F universal def⇔ ∀G,G � F
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Simulation pre-orders

I Ingredients:

1 “local” comparison relations
subautomaton
factor

2 rescaling operations

General idea

pre-order ≡ local comparison up to rescaling
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Rescaling operations

I 3 parameters: F 7→ F 〈m,t ,z〉

time
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cell grouping

Global map

F 〈1,1,0〉 = F

o−1
m : QZ → (Qm)Z canonical bijection
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Rescaling operations

I 3 parameters: F 7→ F 〈m,t ,z〉

time
shift
cell grouping
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Global map
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Rescaling operations

I 3 parameters: F 7→ F 〈m,t ,z〉

time
shift
cell grouping

Fact

F 〈m,t ,z〉 is a cellular automaton
with a possibly different alphabet
with a possibly different radius
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3 pre-orders

injective simulation

F �i G def⇔ ∃−→p1,
−→p2 : F 〈

−→p1〉 v G〈
−→p2〉

surjective simulation

F �s G def⇔ ∃−→p1,
−→p2 : F 〈

−→p1〉 E G〈
−→p2〉

mixed simulation

F �m G def⇔ ∃−→p1,
−→p2 : F 〈

−→p1〉 Ev G〈
−→p2〉
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Intrinsic Universality

intrinsic universality def
= Ui

def
=

{
F : ∀G,G�iF

}
N. Ollinger, “Universalities in Cellular Automata”,

Handbook of natural computing

Theorem (Rapaport) — no real-time universality

If F ∈ Ui then there is some G with G〈
−→p 〉 6v F 〈t ,t ,z〉, (∀−→p , t , z).

Theorem (Ollinger) — strong universality

If F ∈ Ui then for all G there is −→p such that G v F 〈
−→p 〉.

Exercise

If F ∈ Ui and has a spreading state then it can simulate any G
without using the spreading state.



Intrinsic Universality

intrinsic universality def
= Ui

def
=

{
F : ∀G,G�iF

}
N. Ollinger, “Universalities in Cellular Automata”,

Handbook of natural computing

Theorem (Rapaport) — no real-time universality

If F ∈ Ui then there is some G with G〈
−→p 〉 6v F 〈t ,t ,z〉, (∀−→p , t , z).

Theorem (Ollinger) — strong universality

If F ∈ Ui then for all G there is −→p such that G v F 〈
−→p 〉.

Exercise

If F ∈ Ui and has a spreading state then it can simulate any G
without using the spreading state.



Intrinsic Universality

intrinsic universality def
= Ui

def
=

{
F : ∀G,G�iF

}
N. Ollinger, “Universalities in Cellular Automata”,

Handbook of natural computing

Theorem (Rapaport) — no real-time universality

If F ∈ Ui then there is some G with G〈
−→p 〉 6v F 〈t ,t ,z〉, (∀−→p , t , z).

Theorem (Ollinger) — strong universality

If F ∈ Ui then for all G there is −→p such that G v F 〈
−→p 〉.

Exercise

If F ∈ Ui and has a spreading state then it can simulate any G
without using the spreading state.



Intrinsic Universality

intrinsic universality def
= Ui

def
=

{
F : ∀G,G�iF

}
N. Ollinger, “Universalities in Cellular Automata”,

Handbook of natural computing

Theorem (Rapaport) — no real-time universality

If F ∈ Ui then there is some G with G〈
−→p 〉 6v F 〈t ,t ,z〉, (∀−→p , t , z).

Theorem (Ollinger) — strong universality

If F ∈ Ui then for all G there is −→p such that G v F 〈
−→p 〉.

Exercise

If F ∈ Ui and has a spreading state then it can simulate any G
without using the spreading state.



Intrinsic Universality
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Intrinsic universality is undecidable.

Proposition

F ×G universal iff F universal or G universal.

Exercise

If F is not universal then there is a non-universal G with

F�iG but G���iF
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How Common is Intrinsic Universality?
The quest for small intrinsically universal CA

I 2D
Banks 1970: 2 states + von Neuman neighb.
Conway 1970: Game of Life (2 states + Moore neighb.)

I 1D
Banks 1970: 2 states + large radius
Ollinger 2002: 6 states + radius 1
Richard 2008: 4 states + radius 1 (Ui or Um?)

Open problems
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?
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is 110 intrinsically unievrsal?
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How Common is Intrinsic Universality?
Adding syntactical constraints

I Definitions:
F is captive if ∀−→x :

f (x1, . . . , xk ) ∈ {x1, . . . , xk}

F is multiset if ∀−→x and ∀ permutation π

f (−→x ) = f
(
π(
−→x )

)
Theorem

There exists intrinsically universal CA in the following families:
number conserving
totalistic (⊆ multiset)
captive
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Density

P a property (a set of CA)
F a family (a set of CA)
Fn,r : CA from F with n states and radius r
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#P ∩ Fn,r0
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How do sub-families spread over the set of CA?

syntactical restriction⇒ restriction on global behaviours?

Proposition

∀F there is G with radius 1 and F ∼ G
there are equivalence classes without any 2-state CA

I Encodings
φ : CA→ F encoding if F �i φ(F ) for all F
fairness wrt universality: F ∈ Ui ⇔ φ(F ) ∈ Ui
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How do sub-families spread over the set of CA?

syntactical restriction⇒ restriction on global behaviours?

Proposition

∀F there is G with radius 1 and F ∼ G
there are equivalence classes without any 2-state CA

I Encodings
φ : CA→ F encoding if F �i φ(F ) for all F
fairness wrt universality: F ∈ Ui ⇔ φ(F ) ∈ Ui

Theorem

There are recursive fair encodings from CA into captive CA,
and from CA into multiset CA.



How do sub-families spread over the set of CA?

syntactical restriction⇒ restriction on global behaviours?

Proposition

∀F there is G with radius 1 and F ∼ G
there are equivalence classes without any 2-state CA

I Encodings
φ : CA→ F encoding if F �i φ(F ) for all F
fairness wrt universality: F ∈ Ui ⇔ φ(F ) ∈ Ui

Open problem

What are equivalence classes without any captive and/or
multiset CA?



Other universalities

I Reversible CA
there is no reversible F ∈ Ui

but “reversible-universality” (RUi ) exists!

Theorem (Durand-Lose)

There exists a reversible F with G �i F for all reversible G.

I Surjective CA
there is no surjective F ∈ Ui

there is no “surjective-universality” when dimension ≥ 2

Open problem

Is there a “surjective-universal” CA in dimension 1?
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I Pre-order �s

q persistent state def⇔ f (∗,q, ∗) = q

X def
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There exists F ∈ X such that G �s F for all G ∈ X .
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Future directions

1 more general simulations?
sub-systems induced by stable sub-shifts (SFT? sofic?)
factor with context (sliding block codes)

2 dimension change
constructions à la Toffoli?
sub-actions à la Hochman?

3 asynchronous CA



Don’t Know What to Do During the World Cup?

I My list of small open questions

1 F non-surjective ?⇒ NIL�iF

2 F reversible ?⇒ Id� F

3 find a reversible F with F 6∼ F−1

4 more than 3 classes of equicontinuous (up to σ) CA?

5 F expansive and G E F ?⇒ G expansive

Thank you!
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