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What is a classification?

» Classical approach:
El define a priori a list of properties or classes
H being similar < satisfying the same properties

» This talk:
Kl define a relation of similarity or equivalence between CA
B equivalence classes are obtained a posteriori

Key points:
m no external tools used to define properties
m infinitely many classes
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What is universality?

» Classical approach:

encoding
Turing-complete Universal
device \_/ CA
decoding

m encoding/decoding/halt problem
m only a positive definition

» This talk:
H define a notion of simulation between CA

H intrinsic universality & ability to simulate all CA
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Putting Order into Classifications and Universality

» 1 solution for 2 problems

El define a pre-order on CA: <
(reflexive and transitive relation)

H classification:
m induced equivalence relation

F-GE F Gaidis<F

m topology of the pre-order

HE universality:
F universal % VG, G= F



Simulation pre-orders

» Ingredients:

Kl “local” comparison relations

m subautomaton
m factor

B rescaling operations

General idea
pre-order = local comparison up to rescaling
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» 3 parameters: F — F(mt2)
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Rescaling operations

» 3 parameters: F — F(mt2)

m time | | | |

m shift

m cell grouping | L1 |
| | | |

Fact

F{mt2) is a cellular automaton
m with a possibly different alphabet
m with a possibly different radius
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3 pre-orders

m injective simulation

F=,G & =g pi FIP) C G

m surjective simulation

F2.G & o5 o FPiL4 GgiP)

® mixed simulation

F=.G ¥ =p g . FP) ac G2
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Separation

|

o x o' + wall state

block reduction block reduction + parity test
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Intrinsic Universality

intrinsic universality % U; %' {F:vG, G=F}

N. Ollinger, “Universalities in Cellular Automata”,
Handbook of natural computing

Theorem (Rapaport) — no real-time universality
If F € Uj then there is some G with G\P) Z Fitt2) (v, ¢, 2).

Theorem (Ollinger) — strong universality
If F € U: then for all G there is B such that G C F(P).

Exercise

If F € U; and has a spreading state then it can simulate any G
without using the spreading state.
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Intrinsic Universality

Theorem (Ollinger)

Intrinsic universality is undecidable.

Proposition

F x G universal iff F universal or G universal.

Exercise

If Fis not universal then there is a non-universal G with

F<:G but G%F
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The quest for small intrinsically universal CA

» 2D
m Banks 1970: 2 states + von Neuman neighb.
m Conway 1970: Game of Life (2 states + Moore neighb.)

» 1D
m Banks 1970: 2 states + large radius
m Ollinger 2002: 6 states + radius 1
m Richard 2008: 4 states + radius 1 (U; or U,?)

| U,’ ;Um
m is 110 intrinsically unievrsal?
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Adding syntactical constraints

» Definitions:
m Fis captive if VX :
f(X1>"'7Xk) & {X1>"'7Xk}
m F is multiset if VX and V permutation

(%) = H(x(X))

Theorem

There exists intrinsically universal CA in the following families:
m number conserving
m totalistic (C multiset)
m captive
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m P a property (a set of CA)
m F afamily (a set of CA)
m F,,: CA from F with n states and radius r
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Theorem (Boyer,T.)

m d,(U;/captive CA) = 1
m d,(U;/multiset CA) = 1
m combination of both + other families (e.g. outer-totalistic)



How Common is Intrinsic Universality?
Density

m P a property (a set of CA)
m F a family (a set of CA)
m F,,: CA from F with n states and radius r

. #H#PNFnr
dn(P/F) = lim ——>2
n( / ) n—oo  #Fnr,

L PGl B
dr(P/F) = lim ———2=
r( / ) Lo #Fno,l’

m dy(U;/CA)?
m d,(U;/CA)?
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How do sub-families spread over the set of CA?
syntactical restriction = restriction on global behaviours?

Proposition

m VF there is G with radius 1 and F ~ G
m there are equivalence classes without any 2-state CA

» Encodings
m ¢: CA— F encoding if F <; ¢(F) for all F
m fairness wrt universality: F € U; & ¢(F) € U;

Theorem

There are recursive fair encodings from CA into captive CA,
and from CA into multiset CA.



How do sub-families spread over the set of CA?

syntactical restriction = restriction on global behaviours?

Proposition

m VF there is G with radius 1 and F ~ G
m there are equivalence classes without any 2-state CA

» Encodings
m ¢: CA— F encoding if F <; ¢(F) for all F
m fairness wrt universality: F € U; < ¢(F) € U;

What are equivalence classes without any captive and/or
multiset CA?
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Other universalities

» Reversible CA
m there is no reversible F € U;
m but “reversible-universality” (RU;) exists!

Theorem (Durand-Lose)
There exists a reversible F with G <; F for all reversible G.

» Surjective CA
m there is no surjective F € U;
m there is no “surjective-universality” when dimension > 2

Is there a “surjective-universal” CA in dimension 17?
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Other universalities

» Pre-order <
m g persistent state & f(x,q,+) = g

m X % CAwitha persistent state

Theorem (Boyer,T.)
There exists F € X such that G <5 F for all G € X.

Is there a universal CA for <s?




Future directions

El more general simulations?

B sub-systems induced by stable sub-shifts (SFT? sofic?)
m factor with context (sliding block codes)

H dimension change

m constructions a la Toffoli?
m sub-actions a la Hochman?

H asynchronous CA
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Don’t Know What to Do During the World Cup?

» My list of small open questions
Bl F non-surjective = NIL<;F
H F reversible < Id=< F

H find a reversible F with F £ F~1

B more than 3 classes of equicontinuous (up to o) CA?

B F expansive and G < F :7> G expansive

Thank you!



