On deterministic ACA

Enrico Formenti University of Nice-Sophia Antipolis,France.

Something that is not synchronous is asynchronous!

The definition

Something that is not synchronous is asynchronous!

Concurrent Programming

Concurrent Programming

 $I = \{i_1, i_2, \dots, i_k\}$ $\Theta \subseteq I \times I \qquad \begin{array}{c} \text{symmetric} \\ \text{irreflexive} \end{array}$ $\Theta^c = I \times I \setminus \Theta$ $\mathcal{G} = \langle I, \Theta^c \rangle$

 $\alpha \subseteq I, \theta^{c}(\alpha) = \{i \in I, \exists j \in \alpha \mid (i, j) \theta^{c}\}$

Concurrent Programming

Concurrent
 Programming
 Bio informatics

 $i \in \{1, \ldots, n\}$ $P_i \subseteq I$ G_P P_6 P_8 P_7 P_{γ} P_5

"Generalizing"

Finite vs Infinite
 Finite Graph vs Lattice
 Non-uniform vs Uniform
 Drop dependency graph

"Generalizing"

Finite vs Infinite
 Finite Graph vs Lattice
 Non-uniform vs Uniform
 Drop dependency graph

"Generalizing"

More (re-)discoverings

 $F'\colon \{0,1\}^{\mathbb{Z}} \times I^{\mathbb{Z}} \to I^{\mathbb{Z}}$

F'(x, y) = (id(x), F(y))

F'(x, y) = (G(x), F(y))

So far...

G shift invariant continuous ► CA

G continuous \blacktriangleright V-CA

G shift invariant continuous ► "P"CA

G ► ???

So far...

G shift invariant continuous ► CA

G continuous \blacktriangleright V-CA

G shift invariant continuous ► "P"CA

G ► ???

Time for pictures

ECA 54

(54, 90)

Time for pictures

ECA 54

(54, 90)

More pictures

ECA 54

(54, 18)

More pictures

ECA 54

(54, 18)

Even more pictures

(54, id)

Even more pictures

(54,id)

Deterministic ACA

$$G = \mathbb{Z}^{\mathbb{N}}$$

 $t = 1 \qquad \dots 0, 0, 0, 0, 0, 0, 1, 0 | 0, 0, 0, 0, 0, 0, 0, \dots$ $t = 0 \qquad \dots 0, 0, 0, 0, 0, 0, 0, 0 | 0, 0, 0, 0, 1, 0, \dots$ $t = 2 \qquad \dots 0, 0, 0, 0, 0, 0, 0 | 1, 0, 0, 0, 0, 0, \dots$

Deterministic ACA

$$G = \mathbb{Z}^{\mathbb{N}}$$

 $t = 1 \qquad \dots 0, 0, 0, 0, 0, 0, 1, 0 | 0, 0, 0, 0, 0, 0, 0, \dots$ $t = 0 \qquad \dots 0, 0, 0, 0, 0, 0, 0, 0 | 0, 0, 0, 0, 1, 0 \dots$ $t = 2 \qquad \dots 0, 0, 0, 0, 0, 0, 0 | 1, 0, 0, 0, 0, 0, \dots$

Global function

 x_{i}^{t} $z_{i}^{0} = y_{i}$ $z_{i}^{t} = (F')^{t}(x, y)_{i}$ $(F')^{t}(x, y)_{i} = (1 - x_{i}^{t})z_{i}^{t-1} + x_{i}^{t}\delta(z_{i-r}^{t-1}, \dots, z_{i}^{t-1}, \dots, z_{i+r}^{t-1})$

Global function

 x_i^t $z_i^0 = y_i$ $z_i^t = (F')^t (x, y)_i$ $(F')^{t}(x,y)_{i} = (1-x_{i}^{t})z_{i}^{t-1} + x_{i}^{t}\delta(z_{i-r}^{t-1},\ldots,z_{i}^{t-1},\ldots,z_{i+r}^{t-1})$

Set properties

Definition.

F' is injective iff

 $\forall y, z \in A^{\mathbb{Z}}, \forall x \in \mathbb{Z}^{\mathbb{N}}$

 $z \neq y \Rightarrow \forall t \in \mathbb{N} \ F'(x^t, y) \neq F'(x^t, z)$

Set properties

Definition.

 F^\prime is injective iff

 $\forall y, z \in A^{\mathbb{Z}}, \forall x \in \mathbb{Z}^{\mathbb{N}}$

 $z \neq y \Rightarrow \forall t \in \mathbb{N} \ F'(x^t, y) \neq F'(x^t, z)$

Set properties (2)

Definition. F' is surjective iff $\forall y \in A^{\mathbb{Z}}, \forall x \in \mathbb{Z}^{\mathbb{N}}$ $\forall t \in \mathbb{N} \exists z \in A^{\mathbb{Z}} F'(x^t, y) \neq F'(x^t, z)$

Set properties (2)

Definition. F' is surjective iff $\forall y \in A^{\mathbb{Z}}, \forall x \in \mathbb{Z}^{\mathbb{N}}$ $\forall t \in \mathbb{N} \exists z \in A^{\mathbb{Z}} F'(x^t, y) \neq F'(x^t, z)$

Set properties (3)

Proposition.

The following properties are equivalent

- 1) F' is injective
- 2) F' is surjective
- 3) δ is center permutative

Set properties (3)

Proposition.

The following properties are equivalent

- 1) F' is injective
- 2) F' is surjective
- 3) δ is center permutative

Dynamics

Proposition. If $x \in \mathbb{Z}^{\mathbb{N}}$ is ultimately periodic, then $y, F'(x^1, y), (F')^2(x^2, y), \dots, (F')^n(x^n, y), \dots$

is ultimately periodic.

Dynamics

Proposition. If $x \in \mathbb{Z}^{\mathbb{N}}$ is ultimately periodic, then $y, F'(x^1, y), (F')^2(x^2, y), \dots, (F')^n(x^n, y), \dots$

is ultimately periodic.

Dynamics (2)

Definition. F' is sensitive to initial conditions, iff $\exists x \in \mathbb{Z}^{\mathbb{N}} \exists \varepsilon > 0 \forall y \in A^{\mathbb{Z}} \forall \delta > 0 \exists z \in \mathcal{B}_{\delta}(y) \exists t \in \mathbb{N}$

such that

 $d((F')^t(x,y),(F')^t(x,z)) > \varepsilon$

Dynamics (2)

Definition. F' is sensitive to initial conditions, iff $\exists x \in \mathbb{Z}^{\mathbb{N}} \exists \varepsilon > 0 \forall y \in A^{\mathbb{Z}} \forall \delta > 0 \exists z \in \mathcal{B}_{\delta}(y) \exists t \in \mathbb{N}$

such that

 $d((F')^t(x,y),(F')^t(x,z)) > \varepsilon$

Dynamics (3)

Please look at the whiteboard on the right

Dynamics (3)

Please look at the whiteboard on the right

Dynamics (4)

Definition. F' is expansive, iff $\exists x \in \mathbb{Z}^{\mathbb{N}} \exists \varepsilon > 0 \forall y \in A^{\mathbb{Z}} \forall z \in A^{\mathbb{Z}} \exists t \in \mathbb{N}$

such that

 $d((F')^t(x,y),(F')^t(x,z)) > \varepsilon$

Dynamics (4)

Definition. F' is expansive, iff $\exists x \in \mathbb{Z}^{\mathbb{N}} \exists \varepsilon > 0 \forall y \in A^{\mathbb{Z}} \forall z \in A^{\mathbb{Z}} \exists t \in \mathbb{N}$

such that

 $d((F')^t(x,y),(F')^t(x,z)) > \varepsilon$

Dynamics (5)

Again Please look at the whiteboard on the right

Dynamics (5)

Again Please look at the whiteboard on the right

Dynamics (6)

Proposition.

Leftmost or rightmost permutative ACA are sensitive to initial conditions.

Proposition.

Leftmost and rightmost permutative ACA are expansive.

Dynamics (6)

Proposition.

Leftmost or rightmost permutative ACA are sensitive to initial conditions.

Proposition.

Leftmost and rightmost permutative ACA are expansive.

Dynamics (7)

Definition. F' is transitive if and only if $\exists x \in \mathbb{Z}^{\mathbb{N}} \quad \forall U, V \neq \emptyset \quad \exists t \in \mathbb{N}$ such that

 $(F')^t(x,U) \cap V \neq \emptyset$

Dynamics (7)

Definition. F' is transitive if and only if $\exists x \in \mathbb{Z}^{\mathbb{N}} \quad \forall U, V \neq \emptyset \quad \exists t \in \mathbb{N}$ such that

 $(F')^t(x,U) \cap V \neq \emptyset$

Dynamics (8)

Look at the whiteboard

Dynamics (8)

Look at the whiteboard

Dynamics (9)

Proposition.

Leftmost or rightmost permutative ACA are transitive.

(Recall that they are also sensitive)

Dynamics (9)

Proposition.

Leftmost or rightmost permutative ACA are transitive.

(Recall that they are also sensitive)

Dynamics (10)

Definition.

F' has the DPO property if and only if $\exists x \in \mathbb{Z}^N$ such that $F'(x, \cdot)$ has the DPO property.

 $F'(x, \cdot)$ has the DPO property if and only if its set of periodic points is dense.

Dynamics (10)

Definition.

F' has the DPO property if and only if $\exists x \in \mathbb{Z}^N$ such that $F'(x, \cdot)$ has the DPO property.

 $F'(x, \cdot)$ has the DPO property if and only if its set of periodic points is dense.

Dynamics (11)

Proposition.

Deterministic ACA have DPO iff they are surjective.

Dynamics (11)

Proposition.

Deterministic ACA have DPO iff they are surjective.

Dynamics (12)

Lemma.

If $F' \neq id$ and has DPO for some $x \in \mathbb{Z}^N$ then x is bounded.

Corollary.

Fix $x \in \mathbb{Z}^{\mathbb{N}}$. Then $F'(x, \cdot)$ cannot be Devaney chaotic.

Dynamics (12)

Lemma.

If $F' \neq id$ and has DPO for some $x \in \mathbb{Z}^N$ then x is bounded.

Corollary.

Fix $x \in \mathbb{Z}^{\mathbb{N}}$. Then $F'(x, \cdot)$ cannot be Devaney chaotic.

Deterministic ACA are interesting!

What about

Deterministic ACA are interesting!

What about Nilpotency ?

Deterministic ACA are interesting!

What about Nilpotency ? Topological entropy ?

Deterministic ACA are interesting!

Deterministic ACA are interesting!

Updating schemes

Updating schemes More fairness

Updating schemes

More fairness
Structural properties

Updating schemes

More fairness
 Structural properties
 Applications (?)

True conclusions

About computability

Decidability
Tradeoffs

The End.

Many thanks for your attention!