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symmetric
irreflexive

θc = I× I \θ
G = 〈I,θc〉

α⊆ I,θc(α) = {i ∈ I,∃ j ∈ α |(i, j)θc}
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“Generalizing”

Z Lattice

I = {i1, i2, . . . , ik} States

δ : I2r+1→ I Local rule
0-1 +1 ......
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i3 i3i2 i2i1i1 i1i2 i3
0-1 +1 ......

0-1 +1 ......

001 1 1 1 0 0 1

︸ ︷︷ ︸
0 · δ(i1, i2, i2)



More (re-)discoverings

F ′ : {0,1}Z× IZ → IZ

F ′(x,y) = (id(x),F(y))

F ′(x,y) = (G(x),F(y))
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Beginning to 
conclude

Deterministic ACA are interesting!

What about
Nilpotency ?

Higher dimensions ?

Topological entropy ?
Classification ?
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True conclusions

About computability

Decidability
Tradeoffs



The End.

Many thanks for
your

attention!


